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Abstract 

The typical aim of classification tasks is to maximize the accuracy of the 

predicted label for a given input. This accuracy increases with the confidence, 

which is the maximal value of the output units, and when the accuracy equals 

confidence, calibration is achieved. Herein, several methods are proposed to 

enhance the accuracy of inputs with similar confidence, extending significantly 

beyond calibration. Using the first gap between the maximal and second 

maximal output values, the accuracy of the inputs with similar confidence is 

enhanced. The extension of the confidence or confidence gap to their minimal 

value among a set of augmented inputs further enhances the accuracy of inputs 

with similar confidence. Enhanced accuracies are demonstrated on 

EfficientNet-B0 trained on ImageNet and CIFAR-100, and VGG-16 trained on 

CIFAR-100. The results suggest improved applications for high-accuracy 

classification tasks that require manual operation for a given fraction of low-

accuracy inputs.  
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1. Introduction 

In offline and online classification tasks [1, 2], the typical aim is to maximize the 

accuracy of the predicted label for a given input [3, 4]. Because the trained 

network can fail or correctly predict the output label of a test input, estimating 

the accuracy of the network relies on an ensemble of inputs, that is, the test 

set. However, given a trained network and its accuracy, the question is whether 

the likelihood of the predicted label for a given input is correct. This likelihood 

depends on additional information, that is, the confidence provided by the 

propagation of an input through the trained network to the output layer. 

   For the prototypical classifier, the Perceptron [5, 6], the confidence is the 

induced field on the single output unit, resulting in above- or below- average 

accuracy [7], a concept that can also be extended to recurrent networks [8, 9]. 

For a feedforward network with several output units representing possible 

output labels, the predicted label is selected following the output unit with the 

maximal value. Using softmax normalization [10-12] for the output layer, the 

sum of the output units is one, and the maximal value serves as the confidence 

level. The likelihood to correctly predict a label is expected to increase with 

confidence level within the range [0, 1]. 

   The estimation of accuracy as a function of confidence requires discretization 

into several bins because the validation set is finite. Hence, the fractions of 

correctly predicted, 𝑓𝑐(𝑖), and wrongly predicted, 𝑓𝑤(𝑖) validation inputs 

belonging to the 𝑖𝑡ℎ confidence bin are first calculated, resulting in the bin 

accuracy 

                                           𝐴𝑐𝑐(𝑖) = 𝑓𝑐(𝑖)/(𝑓𝑐(𝑖) + 𝑓𝑤(𝑖))                       (1) , 

where 𝐴𝑐𝑐(𝑖) is in the range [0, 1] and the average accuracy is obtained as 

follows: 

    𝐴𝑐𝑐 =  ∑ 𝐴𝑐𝑐(𝑖)

𝑖

⋅ (𝑓𝑐(𝑖) + 𝑓𝑤(𝑖)) = ∑ 𝑓𝑐(𝑖)

𝑖

         (2).  

 

where the bins are equally spaced in the range [0, 1]. For a given accuracy 𝐴𝑐𝑐, 

one can distinguish between the following three limiting cases for the 

distribution of 𝐴𝑐𝑐(𝑖), where each case is required for a different reality.   



   In the first scenario, 𝐴𝑐𝑐(𝑖) = 𝐴𝑐𝑐, independent of  𝑖 (Fig. 1a), resulting in the 

following entropy per input:  

𝑆 = −𝐴𝑐𝑐 ⋅ ln(𝐴𝑐𝑐) − (1 − 𝐴𝑐𝑐) ⋅ ln [
1 − 𝐴𝑐𝑐

𝑀 − 1
]                  (3),  

 

where 𝐴𝑐𝑐 is the probability for the selected output label to be correct and 
1−𝐴𝑐𝑐

𝑀−1
 

is the probability for the rest of the 𝑀 − 1 labels, and 𝑀 denotes the number of 

output labels. This scenario fits, for instance, the reality of automatic selection 

of an aisle in a store for a returned item, where a tolerance, 1 − 𝐴𝑐𝑐, of 

mismatched aisles is acceptable following a disorder induced by the buyers. 

The second scenario is that for a fraction 𝐴𝑐𝑐 (1 − 𝐴𝑐𝑐) of the validation inputs, 

where the selected output label is correct (wrong) with a probability of one (Fig. 

1b). The accuracy, 𝐴𝑐𝑐, is equal to that in the first scenario (Fig. 1a), however 

with lower averaged entropy per input  

𝑆 = −(1 − 𝐴𝑐𝑐) ⋅ ln [
1 − 𝐴𝑐𝑐

𝑀 − 1
]                                             (4).  

 

This scenario fits the reality of a central storage, where returned items to aisles 

must be correctly placed, either automatically for a fraction 𝐴𝑐𝑐, or manually for 

a fraction 1 − 𝐴𝑐𝑐. Another reality is a partially autonomous vehicle [13, 14], 

where manual operation is required for low-accuracy detection. The last popular 

scenario is calibration [11, 12, 15, 16] which aims that for each bin 

𝐴𝑐𝑐(𝑖) = 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑖)                                                   (5). 

This simple identity indicates, for instance, that the number of correctly 

classified multiple inputs (e.g. in a mini-batch) is given by their average 

confidence (Fig. 1c). In addition, the accuracy increases linearly with 

confidence, which can be easily deduced from the output layer. In this case, the 

entropy is expected to be higher than that in Eq. (4). However, this is not unique, 

because an ensemble of calibrated solutions for a given 𝐴𝑐𝑐 exists. The number 

of parameters is twice the number of bins, 𝑓𝑐(𝑖) and 𝑓𝑤(𝑖), whereas the number 

of constraints is equal to the number of bins   

  

 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑖) = 𝑓𝑐(𝑖)/(𝑓𝑐(𝑖) + 𝑓𝑤(𝑖))            (6) , 

 



with an additional constraint on the accuracy, as expressed in Eq. (2).  

   The goal of this study is to identify simple procedures based on the 

information obtained regarding the input and output layers to increase 𝐴𝑐𝑐(𝑖) 

beyond 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑖) while maintaining 𝐴𝑐𝑐 (Fig. 1d). The realization of the 

limiting case of non-overlapping distributions of 𝑓𝑐(𝑖) and 𝑓𝑤(𝑖) (Fig. 1b) seems 

unrealistic. Nevertheless, we propose methods that result in intermediate cases 

between this limit and calibration (Figs. 1b and c). The proposed methods rely 

on common back-propagation training with softmax normalization of the output 

layer but obtain additional information to improve 𝐴𝑐𝑐(𝑖). For simplicity, our 

validation test is taken as the entire test set. However, it can be divided into two 

parts, validation and test sets, and similar results can be obtained. The results 

are first demonstrated on EfficientNet-B0 [17] trained on ImageNet [18] and 

later extended to CIFAR-100 [19, 20] and VGG-16 [21]. 

 

Fig. 1. Four scenarios for the accuracy per bin, 𝐴𝑐𝑐(𝑖) (red steps connected by 

dashed vertical red lines), as a function of confidence, representing the maximal 

value of the output units, where 𝐴𝑐𝑐 = 0.8 (dotted horizontal red line). The 

fractions of validation inputs with correct (𝑓𝑐(𝑖)) or wrong (𝑓𝑤(𝑖)) output labels 

are represented by blue and orange, respectively. (a) 𝐴𝑐𝑐(𝑖) = 𝐴𝑐𝑐 independent 

of 𝑖. (b) For a fraction 0.8 (blue), 𝐴𝑐𝑐(𝑖) = 1, whereas for a fraction 0.2 (orange), 



𝐴𝑐𝑐 = 0. (c) Calibration, 𝐴𝑐𝑐(𝑖) = 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑖). (d) An intermediate case 

between (b) and (c), where 𝐴𝑐𝑐(𝑖) is typically greater than 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑖). 

 

2. Material and methods 

 

2.1 Architectures and Datasets  

   Two different architectures were examined. VGG-16 [22] and EfficientNet-B0 

[17]. VGG-16 [22] and EfficientNet-B0 [17] were trained to classify CIFAR-100, 

and we used the pre-trained weights of EfficientNet-B0 on the ImageNet 

datasets.  

2.2 Data preprocessing 

   For VGG-16, each input pixel of an image (32 × 32) from the CIFAR-100 

databases was divided by the maximal pixel value, 255, multiplied by 2, and 

subtracted by 1, such that its range was [−1, 1]. During the training phase, data 

augmentation was used, derived from the original images, by random 

horizontally flipping and translating up to four pixels in each direction. 

For EfficientNet-B0, the images were normalized by subtracting the average 

value of each color and dividing by its standard deviation. For CIFAR-100, the 

images were also expanded from their initial size of (32 × 32) to 

(224 × 224) [23]. Data augmentation was also used during the training phase, 

which included a random horizontal flip, a random rotation of up to two degrees, 

a random translation of the image of up to four pixels in each direction and a 

shear of up to two degrees.  

2.3 Optimization 

   The cross-entropy cost function was selected for the classification task and 

was minimized using the stochastic gradient descent algorithm [4, 24]. Note 

that the cross-entropy is a standard used measure in deep learning which is 

simply related to Kullback-Leibler entropy [25-27]. The maximal accuracy was 

determined by searching through the hyper-parameters (see below). Cross-

validation was confirmed using several validation databases, each consisting a 

fifth of the training set examples, randomly selected. The averaged results were 



in the same standard deviation (Std) as the reported average success rates 

[28]. The Nesterov momentum [23] and L2 regularization method [4] were 

applied.  

2.4 Hyper-parameters 

   The hyper-parameters η (learning rate), μ (momentum constant [29]), and α 

(regularization L2 [4]) were optimized for offline learning, using a mini-batch 

size of 100 inputs. The learning rate decay schedule [24, 30] was also 

optimized. A linear scheduler was used such that it was multiplied by the decay 

factor, q, every Δt epochs, and is denoted below as (q, Δt). Different hyper-

parameters were used for each one of the architectures on each classification 

task. 

VGG-16 was trained using the following hyper-parameters and decay schedule 

for the training to reach maximal accuracy on CIFAR-100: 

 

Table 1.  Hyper-parameters for VGG-16 trained on CIFR-100 

 

EfficientNet-B0 was trained on CIFAR-100 using the following hyper-

parameters and decay schedule for the training to reach maximal accuracy: 

 

Table 2.  Hyper-parameters for EfficientNet-B0 trained on CIFR-100 

 

2.5 Hardware and software 



    We used Google Colab Pro and its available GPUs. We used Pytorch for all 

the programming processes. 

 

 

3. Results 

3.1. EfficientNet-B0 trained on ImageNet 

 

The training of EfficientNet on ImageNet results in 𝐴𝑐𝑐 = 0.77 [28], and the bin 

accuracy is slightly higher than its confidence level,  

𝐴𝑐𝑐(𝑖) >  𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑖)                          (6) 

 

for all bins (Fig. 2a). This scenario differs, for instance, from that of ResNet-110 

trained on CIFAR100, where 𝐴𝑐𝑐(𝑖) is less than the calibration level [15].  

   For a micro-canonical ensemble of all validation inputs belonging to a bin, 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑖), one can determine an improved estimated accuracy for an input 

(Fig. 2b). The confidence now is the first gap among the output 

units, 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑔𝑎𝑝, i.e. the maximal output unit minus the second maximal 

output unit. Its value is bounded by the upper limit of 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑖) (e.g. 0.5 for 

0.4 < 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑖) ≤ 0.5 (Fig.2b)). For high gap values (> 0.35 in (Fig. 2b)) 

𝐴𝑐𝑐(𝑖) is greater than 𝐴𝑐𝑐, and less than 𝐴𝑐𝑐 for smaller gaps. High gaps 

distinguish better between correct and wrong output labels for the following 

reason. It is expected that for inputs with selected wrong output labels, the 

correct output label value is typically non-negligible as a result of training; hence 

the gap is typically reduced.  

 

 



Fig. 2. Accuracy per bin, 𝐴𝑐𝑐(𝑖) (Eq. (1)), as a function of 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 for 

EfficientNet-B0 trained on ImageNet. The fractions of validation inputs with 

correct (𝑓𝑐 (𝑖)) or wrong (𝑓𝑤  (𝑖)) output labels are represented by blue and 

orange, respectively, and 𝐴𝑐𝑐 by a horizontal doted red line. (a) 𝐴𝑐𝑐(𝑖) (red 

steps connected by dotted vertical red lines) and for comparison of the 

calibration relation (dashed black line). (b) 𝐴𝑐𝑐(𝑖) as a function of the first gap, 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑔𝑎𝑝, the maximal output unit minus the second maximal output unit,  

for all inputs belonging to 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 in the range (0.4, 0.5] in (a), where its  

𝐴𝑐𝑐(𝑖) is represented by the dotted horizontal red line. 

 

3.2. Confidence following the first gap   

 

The zoom-in into 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑖) and the classification of its inputs following 

their first gap (Fig. 2b), suggests the classification of all validation inputs 

following their gap (Fig. 3a). The range of 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑔𝑎𝑝 is [0, 1] as for the 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (Fig. 1); however, inputs belonging to 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑖) do not 

necessarily belong to 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑔𝑎𝑝(𝑖). The accuracy per bin, 𝐴𝑐𝑐(𝑖), as a 

function of 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑔𝑎𝑝(𝑖) (Fig. 3a) increases in comparison to 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 

(Fig. 2a) and deviates further above calibration (Fig. 1c). However, accuracy, 

𝐴𝑐𝑐,  remained the same, because the fraction of inputs with low gaps and low 

accuracy increased. This increase in accuracy stems from a typically smaller 

gap for wrong output labels because the output value of the correct label 

typically competes with it and is expected to be non-negligible. 



 

 

Fig. 3. Accuracy per bin, 𝐴𝑐𝑐(𝑖) (Eq. (1)), as a function of 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑔𝑎𝑝 for 

EfficientNet-B0 trained on ImageNet. The fractions of validation inputs with 

correct (𝑓𝑐 (𝑖)) or wrong (𝑓𝑤  (𝑖)) output labels are represented by blue and 

orange, respectively, 𝐴𝑐𝑐 (horizontal doted red line), 𝐴𝑐𝑐(𝑖) (red steps), and for 

comparison of the calibration relation (dashed black line). Note that 𝐴𝑐𝑐(𝑖) for 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑔𝑎𝑝 is higher in comparison to 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (Fig. 2a). 

 

3.3. Augmentations enhance accuracy 

Network training with augmented inputs [31] ensures that the test set accuracy 

is similar to that of all the augmented versions. This additional information is 

useful for enhancing 𝐴𝑐𝑐(𝑖) in the following ways. In the first method, the output 

label of a test input and its additional 24 augmented versions are calculated. 

Next, the predicted output label is selected following the majority, 𝑁, among the 

25 output labels of the augmented inputs, and the final confidence is set as the 

minimum among these 𝑁, 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑚𝑖𝑛 (Fig. 4a). Typically, 𝑁 is close to 25; 

however, test inputs for which 𝑁 < 10 are present. Thereafter, 𝐴𝑐𝑐(𝑖) is 

calculated following Eq. (1) (Fig. 4a), indicating enhanced accuracy in 

comparison to the 𝑁 = 1 case (Fig. 4d). This stems from the following 



enhancing trend; for correctly predicted output labels, the confidence of each 

augmented input is expected to exhibit a slight variance around its average. 

However, for wrongly predicted output labels competing with the correct label, 

a higher variance is expected and the minimal variance is dominated by the tail 

of the distribution. Hence, a shift to 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑚𝑖𝑛 values is expected, as 

indicated by the comparison of the orange distributions in Figs. 2a and 4a.  

   Similar to Fig. 2b, an improved estimated accuracy for an input can be 

achieved by following the first gap in the output units of the selected 

augmentation with 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑚𝑖𝑛. For a microcanonical ensemble of inputs in 

the range 0.3 < 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑚𝑖𝑛(𝑖) ≤ 0.4, for instance, accuracy is greater than 

the average one for 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑔𝑎𝑝 > 0.1 and it increases towards ∼ 0.85 for 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑔𝑎𝑝 approaching 0.4 (Fig. 4b).     

   Selecting the 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑔𝑎𝑝 (Fig. 3) as the minimal gap obtained from the 

majority of augmented inputs with the same output label further improves 

accuracy, significantly above calibration (Fig. 4c). Here, the two 

aforementioned enhancing trends are combined to further separate the 

distributions of the correctly and wrongly predicted output labels (blue and 

orange distributions illustrated in Fig. 4c). The first effect is that the first gap is 

expected to be higher for the correctly predicted output label, because for a 

wrong output label the competition with the correct one tends to decrease the 

gap. Similarly, the minimal gap among the multiple first gaps, stemming from 

the augmented inputs, is dominated by the tail of their distribution for the 

wrongly predicted output labels. Hence, it is expected to decrease further and 

enhance accuracy. Nevertheless, 𝐴𝑐𝑐 is unaffected because the fraction of 

inputs with small 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑔𝑎𝑝 is higher (Fig. 4c). 



 

 

Fig. 4. Enhanced confidence using augmentations for EfficientNet-B0 trained 

on ImageNet. (a) 𝐴𝑐𝑐(𝑖) as a function of minimal confidence, 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑚𝑖𝑛, for 

an output label, selected by the most common one among the 25 augmented 

inputs. 𝐴𝑐𝑐 (horizonal dotted red line) and calibration (dashed black line), in 

panels (a–c). (b) Similar to Fig. 2b, for inputs belonging to 0.3 <

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑚𝑖𝑛 ≤ 0.4 . (c) Similar to (a), where 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑚𝑖𝑛 is replaced by 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑔𝑎𝑝, the minimal first gap that is obtained from the most common 

output label of the augmented inputs. (d) 𝐴𝑐𝑐(𝑖) as a function of 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 

(green) as illustrated in Fig. 2a, 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑔𝑎𝑝 (blue) as illustrated in Fig. 3, 

and 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑔𝑎𝑝 (red) using augmentations as illustrated in Fig. 4a. 

 

3.4. EfficeintNet-B0 and VGG-16 trained on CIFAR-100  

 

The results presented for EfficientNet-B0 trained on ImageNet are extended to 

a different dataset, CIFAR-100, and to a different deep architecture, VGG-16 

[21, 32].   



   Applying the aforementioned procedures to EfficientNet-B0 trained on 

CIFAR-100 result in similar trends (Figs. 5a and 4d). The accuracy as a function 

of 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 is less than the calibration level (Fig. 5a, green). Enhanced 

accuracy is obtained for 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑔𝑎𝑝 (Fig. 5a, blue), which is further 

enhanced for 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑔𝑎𝑝 among 25 augmentations for each input (Fig. 5a, 

red), representing the same trends as illustrated in Fig. 4d. Similar trends are 

obtained for VGG-16 trained on CIFAR-100 (Fig. 5b), where the enhancement 

of the 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑔𝑎𝑝 (blue) over 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (green) is less than that illustrated 

in Fig. 5a.  

 

 

Fig. 5. Enhanced 𝐴𝑐𝑐(𝑖)  for a different dataset and deep architecture using 

similar presentation as illustrated in Fig. 4d. (a) EfficientNet-B0 trained on 

CIFAR-100. (b) VGG-16 trained on CIFAR-100.  

 

 

 

4. Conclusions 

Several methods were proposed to enhance the accuracy of a given input, 

indicating that the actual information in the input and output layers is not fully 

utilized by the 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 measure.  

   The first method was within the standard 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 measure. For a 

microcanonical ensemble of inputs belonging to a bin (Figs. 2b and 4b) 

accuracy was enhanced as a function of the first gap, which is the difference 



between the maximal and the second maximal output units. For a fraction of 

these inputs with large first gap accuracy was significantly above the bin's 

accuracy, 𝐴𝑐𝑐(𝑖) (Fig. 2b).  

   The second method replaced the 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 measure with 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑔𝑎𝑝, 

the first gap as defined in the first method but for all validation inputs. The range 

of 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑔𝑎𝑝 remained [0, 1] and the profile of its accuracy was enhanced 

in comparison with 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (Fig. 3). This relies on the trend that the 

confidence of the correct and wrong output labels might be the same. However, 

the first gap for the wrong one is expected to be smaller because in such events, 

the output of the correct label is not negligible.   

   The third method relied on several augmented inputs that were expected to 

yield similar confidence levels when the predicted label was correct. The new 

confidence measure was the minimum confidence among the augmented 

inputs, selecting their most common output label (Fig. 4a). The enhanced 

accuracy trend relies on the expectation that for an input selecting a wrong 

output label, some augmented inputs generate a significantly lower minimal 

confidence in comparison to inputs selecting the correct output label. 

   The fourth method combined the second and third methods (Fig. 4c). The 

confidence measure was replaced by the minimal first gap among the 

augmented inputs, selecting their most common output label. The 

abovementioned two accuracy enhancement trends are valid in this scenario 

and result in the maximal accuracy profile among the four presented methods. 

Enhancing the accuracy profile even further using a more complex confidence 

measure, for instance, depending on several gaps, may be possible; however, 

this requires further research.    

   For a given accuracy, the scenario for minimal entropy is given by two non-

overlapping distributions for the correct and wrong output labels (Fig. 1b); 

however, approaching or approximating such a reality is uncertain. 

Temperature scaling was found to affect the accuracy profile and to achieve 

calibration [11, 12, 15, 16]. It adds a temperature coefficient to the softmax 

activation function which scales the output values. Hence, this temperature 

scaling mechanism, along with one of the proposed advanced accuracy 

methods might be used to approximate a profile with minimal entropy (Fig. 1b). 



However, the possible demand for varying temperatures for each bin is 

expected to increase the complexity of such optimization procedures.  
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